
Semester 1, 2024-2025

Large Language Models
Introduction and Recent Advances

ELL881 · AIL821

Tanmoy Chakraborty
Associate Professor, IIT Delhi

https://tanmoychak.com/

https://tanmoychak.com/


Course Instructors

Tanmoy Chakraborty
IIT Delhi

Sourish Dasgupta
DA-IICT

Yatin Nandwani
IBM Research

Gaurav Pandey
IBM Research

Dinesh Raghu
IBM Research

Manish Gupta
Microsoft

Anwoy Chatterjee
PhD student, IIT Delhi

Course TA



LLMs: Introduction & Recent AdvancesTanmoy Chakraborty

Course Directives
• Slot H (Mon, Wed: 11-12; Thu: 12-13)
• Website: https://lcs2-iitd.github.io/ELL881-AIL821-2401/
• YouTube: https://www.youtube.com/@lcs2575
• Room: II-301

Marks distribution (tentative)
• Minor: 15%
• Major: 25%
• Quiz (2): 10%
• Assignment (1): 20% 
• Mini-project:  30% (group-wise)

• Audit: B- (threshold to pass the course)
• Grading Scheme: TBD

https://www.lcs2.in/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://www.youtube.com/@lcs2575
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Course Project
• Some problem statements, and datasets will be floated soon*
• Each group should consist of 1-2 students
• Best Project Award  
• You need to

• develop models
• evaluate your models
• prepare presentation
• write tech report

Students are encouraged to publish their projects in good 
conferences/journals

* You are welcome to propose a new idea if you find it fascinating to be qualified for a course project. Instructor opines! 

https://www.lcs2.in/
https://home.iitd.ac.in/
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Course Project
• Some problem statements, and datasets will be floated soon*
• Each group should consist of 1-2 students
• Best Project Award  
• You need to

• develop models
• evaluate your models
• prepare presentation
• write tech report

Students are encouraged to publish their projects in good 
conferences/journals

Deliverables:
1. Final project report (15%), 8 pages ACL format. Encouraged to arxiv
2. Repo of dataset and source code (5%)
3. Final project presentation (10%) 

* You are welcome to propose a new idea if you find it fascinating to be qualified for a course project. Instructor opines! 

https://www.lcs2.in/
https://home.iitd.ac.in/
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Do Not Plagiarize !
Academic Integrity is of utmost importance. If anyone is found cheating/plagiarizing, it will 
result in negative penalty (and possibly even more: an F grade or even DisCo).
Collaborate. But do NOT cheat.
• Assignments to be done individually.

• Do not share any part of code.

• Do not copy any part of report from any online resources or published works.

• If you reuse other’s works, always cite.

• If you discuss with others about assignment or outside your group for project, mention their names in 
the report.

• Do not use GenAI tools (like, ChatGPT).

We will check for pairwise plagiarism in submitted assignment code files among you all.
We will also check the probability of any submitted content being AI generated. 
Project reports will be checked for plagiarism across all web resources.

https://www.lcs2.in/
https://home.iitd.ac.in/
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Course Content

• This is an advanced graduate course and we will be teaching and discussing state-of-

the-art papers about large language models. 

• The course is mostly presentation- and discussion-based and all the students are 

expected to come to the class regularly and participate in discussion

https://www.lcs2.in/
https://home.iitd.ac.in/
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Course Content

• Introduction
• Intro to NLP
• Intro to Language 

Models (LMs)
• Word Embeddings 

(Word2Vec, 
GloVE)

• Neural LMs (CNN, 
RNN, Seq2Seq, 
Attention)

Basics

https://www.lcs2.in/
https://home.iitd.ac.in/
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Course Content

• Intro to 
Transformer

• Decoder-only LM, 
Prefix LM, 
Decoding 
strategies

• Encoder-only LM, 
Encoder-decoder 
LM

• Advanced 
Attention

• Mixture of Experts

Architecture

• Introduction
• Intro to NLP
• Intro to Language 

Models (LMs)
• Word Embeddings 

(Word2Vec, 
GloVE)

• Neural LMs (CNN, 
RNN, Seq2Seq, 
Attention)

Basics

https://www.lcs2.in/
https://home.iitd.ac.in/
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Course Content

• Scaling laws
• Instruction fine-

tuning
• In-context learning
• Alignment
• Distillation and 

PEFT
• Efficient/Constraint 

LM inference

Learnability

• Intro to 
Transformer

• Decoder-only LM, 
Prefix LM, 
Decoding 
strategies

• Encoder-only LM, 
Encoder-decoder 
LM

• Advanced 
Attention

• Mixture of Experts

Architecture

• Introduction
• Intro to NLP
• Intro to Language 

Models (LMs)
• Word Embeddings 

(Word2Vec, 
GloVE)

• Neural LMs (CNN, 
RNN, Seq2Seq, 
Attention)

Basics

https://www.lcs2.in/
https://home.iitd.ac.in/
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Course Content

• RAG
• Multilingual LMs
• Tool-augmented 

LMs
• Reasoning
• Vision Language 

Models
• Handling long 

context
• Model editing

User Acceptability

• Scaling laws
• Instruction fine-

tuning
• In-context learning
• Alignment
• Distillation and 

PEFT
• Efficient/Constraint 

LM inference

Learnability

• Intro to 
Transformer

• Decoder-only LM, 
Prefix LM, 
Decoding 
strategies

• Encoder-only LM, 
Encoder-decoder 
LM

• Advanced 
Attention

• Mixture of Experts

Architecture

• Introduction
• Intro to NLP
• Intro to Language 

Models (LMs)
• Word Embeddings 

(Word2Vec, 
GloVE)

• Neural LMs (CNN, 
RNN, Seq2Seq, 
Attention)

Basics

https://www.lcs2.in/
https://home.iitd.ac.in/
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Course Content

• Bias, toxicity and 
hallucination 

• Interpretability
• Beyond 

Transformer: State 
Space Models

Ethics and Misc.

• RAG
• Multilingual LMs
• Tool-augmented 

LMs
• Reasoning
• Vision Language 

Models
• Handling long 

context
• Model editing

User Acceptability

• Scaling laws
• Instruction fine-

tuning
• In-context learning
• Alignment
• Distillation and 

PEFT
• Efficient/Constraint 

LM inference

Learnability

• Intro to 
Transformer

• Decoder-only LM, 
Prefix LM, 
Decoding 
strategies

• Encoder-only LM, 
Encoder-decoder 
LM

• Advanced 
Attention

• Mixture of Experts

Architecture

• Introduction
• Intro to NLP
• Intro to Language 

Models (LMs)
• Word Embeddings 

(Word2Vec, 
GloVE)

• Neural LMs (CNN, 
RNN, Seq2Seq, 
Attention)

Basics

https://www.lcs2.in/
https://home.iitd.ac.in/
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Pre-Requisites
• Excitement about language! 
• Willingness to learn

https://www.lcs2.in/
https://home.iitd.ac.in/
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Pre-Requisites

Mandatory Desirable

• Data Structures & Algorithms
• Machine Learning
• Python programming

• NLP
• Deep learning

• Excitement about language! 
• Willingness to learn

https://www.lcs2.in/
https://home.iitd.ac.in/
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Pre-Requisites
• Excitement about language! 
• Willingness to learn

This course will NOT cover:
• Details of NLP (ELL884: https://sites.google.com/view/ell881), Machine Learning and Deep Learning
• Coding practice
• Generative models for modalities other than text

Mandatory Desirable

• Data Structures & Algorithms
• Machine Learning
• Python programming

• NLP
• Deep learning

https://www.lcs2.in/
https://home.iitd.ac.in/
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Reading and Reference Materials
• Books (optional reading)

• Speech and Language Processing, Dan Jurafsky and James H. Martin
https://web.stanford.edu/~jurafsky/slp3/ 

• Foundations of Statistical Natural Language Processing, Chris Manning and Hinrich Schütze

• Natural Language Processing, Jacob Eisenstein 
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

• A Primer on Neural Network Models for Natural Language Processing, Yoav Goldberg
http://u.cs.biu.ac.il/~yogo/nnlp.pdf

• Journals
• Computational Linguistics, Natural Language Engineering, TACL, JMLR, TMLR, etc.

• Conferences
• ACL, EMNLP, NAACL, COLING, AAAI, IJCNLP, ICML, NeurIPS, ICLR, WWW, KDD, SIGIR, etc. 

https://www.lcs2.in/
https://home.iitd.ac.in/
https://web.stanford.edu/~jurafsky/slp3/
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
http://u.cs.biu.ac.il/~yogo/nnlp.pdf
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Research Papers Repository

https://aclanthology.org/ 

https://www.lcs2.in/
https://home.iitd.ac.in/
https://aclanthology.org/
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Research Papers Repository

https://arxiv.org/list/cs.CL/recent 

https://www.lcs2.in/
https://home.iitd.ac.in/
https://arxiv.org/list/cs.CL/recent
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Acknowledgements (Non-exhaustive List)
• Advanced NLP, Graham Neubig http://www.phontron.com/class/anlp2022/

• Advanced NLP, Mohit Iyyer https://people.cs.umass.edu/~miyyer/cs685/

• NLP with Deep Learning, Chris Manning, http://web.stanford.edu/class/cs224n/

• Understanding Large Language Models, Danqi Chen https://www.cs.princeton.edu/courses/archive/fall22/cos597G/

• Natural Language Processing, Greg Durrett https://www.cs.utexas.edu/~gdurrett/courses/online-course/materials.html

• Large Language Models: https://stanford-cs324.github.io/winter2022/

• Natural Language Processing at UMBC, https://laramartin.net/NLP-class/

• Computational Ethics in NLP, https://demo.clab.cs.cmu.edu/ethical_nlp/

• Self-supervised models, CS 601.471/671: Self-supervised Models (jhu.edu)

• WING.NUS Large Language Models, https://wing-nus.github.io/cs6101/

• And many more…

https://www.lcs2.in/
https://home.iitd.ac.in/
http://www.phontron.com/class/anlp2022/
https://people.cs.umass.edu/~miyyer/cs685/
http://web.stanford.edu/class/cs224n/
https://www.cs.princeton.edu/courses/archive/fall22/cos597G/
https://www.cs.utexas.edu/~gdurrett/courses/online-course/materials.html
https://stanford-cs324.github.io/winter2022/
https://laramartin.net/NLP-class/
https://demo.clab.cs.cmu.edu/ethical_nlp/
https://self-supervised.cs.jhu.edu/sp2023/
https://wing-nus.github.io/cs6101/
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What is a Language Model (LM)?
Language Model gives the probability distribution over a sequence of tokens.

https://www.lcs2.in/
https://home.iitd.ac.in/
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What is a Language Model (LM)?
Language Model gives the probability distribution over a sequence of tokens.

Language Model

V = {arrived, delhi, have, 
is,  monsoon, rains, the}

Vocabulary

https://www.lcs2.in/
https://home.iitd.ac.in/
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What is a Language Model (LM)?
Language Model gives the probability distribution over a sequence of tokens.

Language Model

P(the monsoon rains 
have arrived) 0.2

V = {arrived, delhi, have, 
is,  monsoon, rains, the}

Vocabulary

https://www.lcs2.in/
https://home.iitd.ac.in/
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What is a Language Model (LM)?
Language Model gives the probability distribution over a sequence of tokens.

Language Model

P(the monsoon rains 
have arrived) 0.2

P(monsoon the have 
rains arrived) 0.001

V = {arrived, delhi, have, 
is,  monsoon, rains, the}

Vocabulary

https://www.lcs2.in/
https://home.iitd.ac.in/
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LMs can ‘Generate’ Text !

https://www.lcs2.in/
https://home.iitd.ac.in/
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LMs can ‘Generate’ Text !

V = {arrived, delhi, have, 
is,  monsoon, rains, the}

Vocabulary
Given input ‘the monsoon rains have’ , LM can calculate 

P(xi | the monsoon rains have) , ∀ xi ϵ V 

https://www.lcs2.in/
https://home.iitd.ac.in/
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LMs can ‘Generate’ Text !

V = {arrived, delhi, have, 
is,  monsoon, rains, the}

Vocabulary
Given input ‘the monsoon rains have’ , LM can calculate 

P(xi | the monsoon rains have) , ∀ xi ϵ V 

For generation, next token is sampled 
from this probability distribution

https://www.lcs2.in/
https://home.iitd.ac.in/
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LMs can ‘Generate’ Text !
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LMs can ‘Generate’ Text !

V = {arrived, delhi, have, 
is,  monsoon, rains, the}

Vocabulary
Given input ‘the monsoon rains have’ , LM can calculate 

P(xi | the monsoon rains have) , ∀ xi ϵ V 

For generation, next token is sampled 
from this probability distributionAuto-regressive LMs calculate 

this distribution efficiently, e.g. 
using ‘Deep’ Neural Networks

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesTanmoy Chakraborty

‘Large’ Language Models
The ‘Large’ in terms of model's size (# parameters) and massive size of training dataset.

Model sizes have 
increased by an order of 
5000x over just the last 
4 years !!!

Image source: https://hellofuture.orange.com/en/the-gpt-3-language-model-revolution-or-evolution/

https://www.lcs2.in/
https://home.iitd.ac.in/
Image%20source:%20https:/hellofuture.orange.com/en/the-gpt-3-language-model-revolution-or-evolution/
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‘Large’ Language Models
The ‘Large’ in terms of model's size (# parameters) and massive size of training dataset.

Model sizes have 
increased by an order of 
5000x over just the last 
4 years !!!

Image source: https://hellofuture.orange.com/en/the-gpt-3-language-model-revolution-or-evolution/

Other recent models: PaLM (540B), OPT (175B), BLOOM 
(176B), Gemini-Ultra (1.56T), GPT-4 (1.76T)

Disclaimer: For API-based models like GPT-4/Gemini-Ultra, the number of parameters are not 
announced officially – these are rumored numbers as on the web

https://www.lcs2.in/
https://home.iitd.ac.in/
Image%20source:%20https:/hellofuture.orange.com/en/the-gpt-3-language-model-revolution-or-evolution/
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LLMs in AI Landscape

Image source: https://www.manning.com/books/build-a-large-language-model-from-scratch

https://www.lcs2.in/
https://home.iitd.ac.in/
https://www.manning.com/books/build-a-large-language-model-from-scratch
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Evolution of 
(L)LMs

We will 
discuss 
about many 
of them in 
this course!

Image source: https://synthedia.substack.com/p/a-timeline-of-large-
language-model

https://www.lcs2.in/
https://home.iitd.ac.in/
https://synthedia.substack.com/p/a-timeline-of-large-language-model
https://synthedia.substack.com/p/a-timeline-of-large-language-model


Post-Transformers Era
The LLM Race
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Google Designed Transformers: But Could it Take 
Advantage? 

https://www.lcs2.in/
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Google Designed Transformers: But Could it Take 
Advantage? 
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Google Designed Transformers: But Could it Take 
Advantage? 

The beginning of use of Transformer as Language 
Representation Models.

BERT achieved SOTA on 11 NLP tasks.

https://www.lcs2.in/
https://home.iitd.ac.in/
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Google Designed Transformers: But Could it Take 
Advantage? 

The beginning of use of Transformer as Language 
Representation Models.

BERT achieved SOTA on 11 NLP tasks.

DistilBERT, TinyBERT, MobileBERT

https://www.lcs2.in/
https://home.iitd.ac.in/
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However, someone was waiting for the right 
opportunity!!

Guess Who?

https://www.lcs2.in/
https://home.iitd.ac.in/
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However, someone was waiting for the right 
opportunity!!
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OpenAI Started Pushing the Frontier
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OpenAI Started Pushing the Frontier
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OpenAI Started Pushing the Frontier

• Use of decoder-only architecture
• The idea of generative pre-training over large corpus  

https://www.lcs2.in/
https://home.iitd.ac.in/
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The Beginning of Scale

• GPT-1 (117 M) → GPT-2 (1.5 B) 13x increase in # parameters
• Minimal changes (some LayerNorms added, modified weight 

initialization)
• Increase in context length: GPT-1 (512 tokens) → GPT-2 (1024 tokens)

https://www.lcs2.in/
https://home.iitd.ac.in/
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The Beginning of Scale

• GPT-1 (117 M) → GPT-2 (1.5 B) 13x increase in # parameters
• Minimal Changes (some LayerNorms added, modified weight 

initialization)
• Increase in context length: GPT-1 (512 tokens) → GPT-2 (1024 tokens)

Performance boosts across tasks

https://www.lcs2.in/
https://home.iitd.ac.in/
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What Was Google Developing Parallelly?

https://www.lcs2.in/
https://home.iitd.ac.in/
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What Was Google Developing Parallelly?

• Similar broader goal of converting all text-based language problems 
into a text-to-text format.

• Used Encoder-Decoder Architecture.
• Pre-training strategy differs from GPT

• Strategy more similar to BERT

https://www.lcs2.in/
https://home.iitd.ac.in/
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Was It Only Google vs OpenAI? 
Where did Meta Stand?

https://www.lcs2.in/
https://home.iitd.ac.in/
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Was It Only Google vs OpenAI? 
Where did Meta Stand?
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Was It Only Google vs OpenAI? 
Where did Meta Stand?

• Replication study of BERT pretraining
• Measured the impact of many key 

hyperparameters and training data 
size. 

• Found that BERT was significantly 
undertrained, and can match or 
exceed the performance of every 
model published after it. 

https://www.lcs2.in/
https://home.iitd.ac.in/
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Was It Only Google vs OpenAI? 
Where did Meta Stand?

• Replication study of BERT pretraining
• Measured the impact of many key 

hyperparameters and training data 
size. 

• Found that BERT was significantly 
undertrained, and can match or 
exceed the performance of every 
model published after it. 

• Proposed methods to learn cross-
lingual language models (XLMs)

• Obtained SOTA on:
• cross-lingual classification
• unsupervised and supervised 

machine translation

https://www.lcs2.in/
https://home.iitd.ac.in/
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OpenAI Continues to Scale

https://www.lcs2.in/
https://home.iitd.ac.in/
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OpenAI Continues to Scale

175 B parameters !

https://www.lcs2.in/
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OpenAI Continues to Scale

175 B parameters !

OpenAI stops open-sourcing!!

https://www.lcs2.in/
https://home.iitd.ac.in/
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Google Starts Scaling too (But is it Late) !

540 B parameters !

https://www.lcs2.in/
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Google Starts Scaling too (But is it Late) !

540 B parameters !

Google follows OpenAI in 
stopping open-sourcing ! 

It’s now the “LLM Race”

https://www.lcs2.in/
https://home.iitd.ac.in/
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2021-2022: A Flurry of LLMs

Megatron-Turing 
NLG

Codex

https://www.lcs2.in/
https://home.iitd.ac.in/
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Meta Promotes Open-sourcing !

https://www.lcs2.in/
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Meta Promotes Open-sourcing !
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Meta Promotes Open-sourcing !

•  A suite of decoder-only pre-trained 
transformers ranging from 125M to 
175B parameters

• Open-sourced !!!

https://www.lcs2.in/
https://home.iitd.ac.in/
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The ChatGPT Moment

November 30, 2022

https://www.lcs2.in/
https://home.iitd.ac.in/
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2023: The Year of Rapid Pace

Feb, 2023: Google releases Bard

https://www.lcs2.in/
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2023: The Year of Rapid Pace

Feb, 2023: Google releases Bard Feb, 2023: Meta releases its LLaMA 
family of open-source models 
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2023: The Year of Rapid Pace

Feb, 2023: Google releases Bard Feb, 2023: Meta releases its LLaMA 
family of open-source models 

March, 2023: Anthropic, a 
start-up founded in 2021 by  

ex-OpenAI researchers, 
releases Claude
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2023: The Year of Rapid Pace

Feb, 2023: Google releases Bard Feb, 2023: Meta releases its LLaMA 
family of open-source models 

March, 2023: Anthropic, a 
start-up founded in 2021 by  

ex-OpenAI researchers, 
releases Claude

March, 2023: OpenAI releases 
GPT-4
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Feb, 2023: Google releases Bard Feb, 2023: Meta releases its LLaMA 
family of open-source models 

Sept, 2023: Mistral AI 
releases Mistral-7B 

model

March, 2023: Anthropic, a 
start-up founded in 2021 by  

ex-OpenAI researchers, 
releases Claude

Nov, 2023: xAI releases 
Grok

March, 2023: OpenAI releases 
GPT-4
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2023: The Year of Rapid Pace

Feb, 2023: Google releases Bard Feb, 2023: Meta releases its LLaMA 
family of open-source models 

Sept, 2023: Mistral AI 
releases Mistral-7B 

model

March, 2023: Anthropic, a 
start-up founded in 2021 by  

ex-OpenAI researchers, 
releases Claude

Nov, 2023: xAI releases 
Grok

Dec, 2023: Google 
releases GeminiMarch, 2023: OpenAI releases 

GPT-4
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Why Does This Course Exist?
Why do we need a separate course on LLMs? What changes with the scale of LMs? 

Although the technical machineries are almost similar, ‘just scaling up’ these models 
results in new emergent behaviors, which lead to significantly different capabilities and 
societal impacts.

Emergence
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• In-context learning: A pre-trained language model can be guided with only prompts to perform different tasks 
(without separate task-specific fine-tuning). 

• In-context learning is an example of emergent behavior.
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LLMs show emergent capabilities, not observed previously in ‘small’ LMs.

• In-context learning: A pre-trained language model can be guided with only prompts to perform different tasks 
(without separate task-specific fine-tuning). 

• In-context learning is an example of emergent behavior.

LLMs are widely adopted in real-world.
• Research: LLMs have transformed NLP research world, achieving state-of-the-art performance across a wide 

range of tasks such as sentiment classification, question answering, summarization, and machine translation.
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Why Does This Course Exist?
LLMs show emergent capabilities, not observed previously in ‘small’ LMs.

• In-context learning: A pre-trained language model can be guided with only prompts to perform different tasks 
(without separate task-specific fine-tuning). 

• In-context learning is an example of emergent behavior.

LLMs are widely adopted in real-world.
• Research: LLMs have transformed NLP research world, achieving state-of-the-art performance across a wide 

range of tasks such as sentiment classification, question answering, summarization, and machine translation.
• Industry: Here is a very incomplete list of some high profile large language models that are being used in 

production systems:
• Google Search (BERT)
• Facebook content moderation (XLM)
• Microsoft’s Azure OpenAI Service (GPT-3/3.5/4)

Content credits: https://stanford-cs324.github.io/winter2022/
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With tremendous capabilities, LLMs’ usage also carries various risks.

• Reliability & Disinformation: LLMs often hallucinate – generate responses that seem correct, but are not 
factually correct.

• Significant challenge for high-stakes applications like healthcare

• Social bias: Most LLMs show performance disparities across demographic groups, and their predictions can 
enforce stereotypes.

• P(He is a doctor) > P(She is a doctor.)

• Training data contains inherent bias
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With tremendous capabilities, LLMs’ usage also carries various risks.

• Reliability & Disinformation: LLMs often hallucinate – generate responses that seem correct, but are not 
factually correct.

• Significant challenge for high-stakes applications like healthcare

• Social bias: Most LLMs show performance disparities across demographic groups, and their predictions can 
enforce stereotypes.

• P(He is a doctor) > P(She is a doctor.)

• Training data contains inherent bias

• Toxicity: LLMs can generate toxic/hateful content.
• Trained on a huge amount of Internet data (e.g., Reddit), which inevitably contains offensive content

• Challenge for applications such as writing assistants or chatbots
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Why Does This Course Exist?
With tremendous capabilities, LLMs’ usage also carries various risks.

• Reliability & Disinformation: LLMs often hallucinate – generate responses that seem correct, but are not 
factually correct.

• Significant challenge for high-stakes applications like healthcare

• Social bias: Most LLMs show performance disparities across demographic groups, and their predictions can 
enforce stereotypes.

• P(He is a doctor) > P(She is a doctor.)
• Training data contains inherent bias

• Toxicity: LLMs can generate toxic/hateful content.
• Trained on a huge amount of Internet data (e.g., Reddit), which inevitably contains offensive content
• Challenge for applications such as writing assistants or chatbots

• Security: LLMs are trained on a scrape of the public Internet - anyone can put up a website that can enter the 
training data. 

• An attacker can perform a data poisoning attack.
Content credits: https://stanford-cs324.github.io/winter2022/
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We Will Cover Almost All of These in 5 Modules

Module-1: Basics

• A refresher on the basics of NLP required to understand and appreciate LLMs

• How did we end up in Neural NLP? 

• We will discuss the transition and the foundations of Neural NLP.

• The basics of Language Modelling

• Initial Neural LMs 

Intro to NLP Intro to Language 
Models (LMs)

Word Embeddings 
(Word2Vec, GloVE)

Neural LMs (CNN, 
RNN, Seq2Seq, 

Attention)

https://www.lcs2.in/
https://home.iitd.ac.in/
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We Will Cover Almost All of These in 5 Modules
• Module-2: Architecture

• Workings of Vanilla Transformers

• Different Transformer Variants

• How do their training strategies differ? How are Masked LMs (like, BERT) 

different from Auto-regressive LMs (like, GPT)?

• Response generation (Decoding) strategies

Intro to Transformer

Decoder-only LM, 
Prefix LM, 
Decoding 
strategies

Encoder-only LM, 
Encoder-decoder 

LM
Advanced Attention

Mixture of Experts

• What makes modern open-source LLMs like LLaMA & Mistral more 

effective over vanilla transformers? 

• An in-depth exploration of the advanced attention mechanisms

• Mixture-of-Experts: an effective architectural choice in modern LLMs

https://www.lcs2.in/
https://home.iitd.ac.in/
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We Will Cover Almost All of These in 5 Modules

• Module-3: Learnability
• Scaling Laws: how does performance vary with scale of LMs? When does ‘emergence’ kick in?

• What makes modern LLMs so good in following user instructions?

• What is In-context Learning? What are its various facets?

• How are LLMs made to generate responses preferred by humans?

• Does it remove toxicity in responses?

• Efficiency is crucial in production systems. 

• How are smaller LMs made capable using pre-trained LLMs?

• How are LLMs efficiently fine-tuned?

• How are response generation latency of LLMs improved?

Scaling laws Instruction fine-
tuning

In-context learning Alignment

Distillation and 
PEFT

Efficient/Constraint 
LM inference

https://www.lcs2.in/
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We Will Cover Almost All of These in 5 Modules

• Module-4: User Acceptability
• How can we make LLMs aware of certain relevant facts while generation?

• Can LLMs operate in multiple languages? 

• Can LLMs reason?

• Can usage of external tools help LLMs perform better?

• Can LLMs handle multiple modalities, like image?

• What changes are required in their architecture to do so?

• How much long inputs can LLMs candle? 

• How can we increase their context length?

• Can we edit model components to mitigate certain issues in LLMs?

Retrieval-
Augmented 

Generation (RAG)
Multilingual LMs Reasoning

Tool-augmented 
LMs

Vision Language 
Models

Handling long 
context

Model editing

https://www.lcs2.in/
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We Will Cover Almost All of These in 5 Modules

• Module-5: Ethics and Miscellaneous

• A discussion on ethical issues and risks of LLM usage

• How are different emergent abilities in LLMs facilitated?

• A peep into the internal workings of LLMs to understand the source of 

their capabilities

• Can LMs based on alternate architecture match Transformer-based 

LLMs?

• State-Space Models (SSMs)

Bias, toxicity and 
hallucination Interpretability

Beyond 
Transformer: State 

Space Models

https://www.lcs2.in/
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Suggestions (For Effective Learning)

• To understand the concepts clearly, experiment with the models (Hugging Face makes life easier).

• Smaller models (like, GPT2) can be run on Google Colab / Kaggle.

• Even 7B models can be run with proper quantization.

Always get your hands dirty !

LLM Research is all about implementing and experimenting with your ideas.

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesTanmoy Chakraborty

Suggestions (For Effective Learning)

• To understand the concepts clearly, experiment with the models (Hugging Face makes life easier).

• Smaller models (like, GPT2) can be run on Google Colab / Kaggle.

• Even 7B models can be run with proper quantization.

Always get your hands dirty !

LLM Research is all about implementing and experimenting with your ideas.

Rule of thumb: 
Nevel believe in any hypothesis until your 

experiments verify it !
r
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